Centimeters

EXIT LEVEL SCIENCE CHART

$Density = \frac{mass}{volume}$	$D = \frac{m}{v}$
$\left(\begin{array}{c} \text{heat gained} \\ \text{or lost} \end{array}\right) = \left(\begin{array}{c} \text{mass} \end{array}\right) \left(\begin{array}{c} \text{change in} \\ \text{temperature} \end{array}\right) \left(\begin{array}{c} \text{specific} \\ \text{heat} \end{array}\right)$	$Q = (m)(\Delta T)(C_p)$
$Speed = \frac{distance\ traveled}{time}$	$v = \frac{d}{t}$
$Acceleration = \frac{\text{final velocity} - \text{initial velocity}}{\text{change in time}}$	$a = \frac{v_{\rm f} - v_{\rm i}}{\Delta t}$
$Momentum = mass \times velocity$	p = mv
Force = $mass \times acceleration$	F = ma
$Work = force \times distance$	W = Fd
$Power = \frac{work}{time}$	$P = \frac{W}{t}$
$\%$ efficiency = $\frac{\text{work output}}{\text{work input}} \times 100$	$\% = \frac{W_{\rm O}}{W_{\rm I}} \times 100$
Kinetic energy = $\frac{1}{2}$ (mass × velocity ²)	$KE = \frac{mv^2}{2}$
$Gravitational\ potential\ energy = mass \times acceleration\ due\ to\ gravity \times height$	PE = mgh
Energy = mass \times (speed of light) ²	$E = mc^2$
Velocity of a wave = frequency \times wavelength	$v = f\lambda$
$Current = \frac{voltage}{resistance}$	$I = \frac{V}{R}$
Electrical power = voltage \times current	P = VI
Electrical energy = power \times time	E = Pt

Constants/Conversions								
$g =$ acceleration due to gravity = 9.8 m/s 2								
$c = \text{speed of light} = 3 \times 10^8 \text{ m/s}$								
speed of sound = 343 m/s at sea level and 20°C								
$1 \text{ cm}^3 = 1 \text{ mL}$								
1 wave cycle/second = 1 hertz (Hz)								
1 calorie (cal) = 4.18 joules								
1000 calories (cal) = 1 Calorie (Cal) = 1 kilocalorie (kcal)								
newton (N) = $kg m/s^2$								
joule(J) = Nm								
watt (W) = $J/s = Nm/s$								
volt (V)	ampere (A)	ohm (Ω)						

Atomic number

Periodic Table of the Elements

			<u> </u>				Шn
71	<u> </u>	174.967	rnieiini	103	<u></u>	(262)	Lawrenci
20	Хþ	173.04	THEFDIAII	102	9	(229)	Nobelium
69	Tu	168.934	Hullulli	101	Md	(258)	Mendelevium
89	ш	167.26	EIDIUIII	100	Fm	(257)	Ferminm
29	운	164.930	IIInIIII	66	Es	(252)	Einsteinium
99	Dy	162.50	Dyspiosium	86	ర	(251)	Californium
65	Tb	158.925	IEIDIUIII	26	番	(247)	Berkelium
64	gg	157.25	Gadominum	96	Cm	(247)	Curium
63	Ш	151.97		92	Am	(243)	Americium
62	Sm	150.36	Samanum	94	Pn	(244)	Plutonium
61	Pm	(145) Promothium	riomemum	63	å	237.048	Neptunium
09	P N	144.24	Neodyminin	95	⊃	238.029	Uranium
29	፵	140.908	riaseouyiiiuiii	91	Ра	232.038 231.036	Protactinium
28	Se	140.12	IIIIIIAO	90	丘	232.038	Thorium
	_						
Lanthanide Series			Actinide Series				

Revised November 30, 2006